English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Progress in Molecular Biology and Translational Science 2017

Gene Editing in Polyploid Crops: Wheat, Camelina, Canola, Potato, Cotton, Peanut, Sugar Cane, and Citrus.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Donald P Weeks

Keywords

Abstract

Polyploid crops make up a significant portion of the major food and fiber crops of the world and include wheat, potato, cotton, apple, peanut, citrus, and brassica oilseeds such as rape, canola, and Camelina. The presence of three sets of chromosomes in triploids, four sets in tetraploids, and six sets in hexaploids present significant challenges to conventional plant breeding and, potentially, to efficient use of rapidly emerging gene and genome-editing systems such as zinc finger nucleases, single-stranded oligonucleotides, TALE effector nucleases, and clustered regularly interspaced short palindromic repeats (CRISPR/Cas9). However, recent studies with each of these techniques in several polyploid crops have demonstrated facile editing of some or all of the genes targeted for modification on homeologous chromosomes. These modifications have allowed improvements in food nutrition, seed oil composition, disease resistance, weed protection, plant breeding procedures, and food safety. Plants and plant products exhibiting useful new traits created through gene editing but lacking foreign DNA may face reduced regulatory restrictions. Such plants can be obtained either by simply selecting for null segregants that have lost their editing transgenes during plant breeding or, even more attractively, by delivery of biodegradable Cas9/sgRNA ribonucleoprotein complexes (i.e., no DNA) into plant cells where they are expressed only transiently but allow for efficient gene editing-a system that has been recently demonstrated in at least two polyploid crops. Such systems that create precise mutations but leave no transgene footprint hold potential promise for assisting with the elimination or great diminution of regulatory processes that presently burden approvals of conventional transgenic crops.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge