English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Scientific Reports 2016-May

Gene expression patterns of two dominant tallgrass prairie species differ in response to warming and altered precipitation.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Melinda D Smith
Ava M Hoffman
Meghan L Avolio

Keywords

Abstract

To better understand the mechanisms underlying plant species responses to climate change, we compared transcriptional profiles of the co-dominant C4 grasses, Andropogon gerardii Vitman and Sorghastrum nutans (L.) Nash, in response to increased temperatures and more variable precipitation regimes in a long-term field experiment in native tallgrass prairie. We used microarray probing of a closely related model species (Zea mays) to assess correlations in leaf temperature (Tleaf) and leaf water potential (LWP) and abundance changes of ~10,000 transcripts in leaf tissue collected from individuals of both species. A greater number of transcripts were found to significantly change in abundance levels with Tleaf and LWP in S. nutans than in A. gerardii. S. nutans also was more responsive to short-term drought recovery than A. gerardii. Water flow regulating transcripts associated with stress avoidance (e.g., aquaporins), as well as those involved in the prevention and repair of damage (e.g., antioxidant enzymes, HSPs), were uniquely more abundant in response to increasing Tleaf in S. nutans. The differential transcriptomic responses of the co-dominant C4 grasses suggest that these species may cope with and respond to temperature and water stress at the molecular level in distinct ways, with implications for tallgrass prairie ecosystem function.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge