English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Planta 2005-Jul

Gene structure and molecular analysis of the laccase-like multicopper oxidase (LMCO) gene family in Arabidopsis thaliana.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Bonnie C McCaig
Richard B Meagher
Jeffrey F D Dean

Keywords

Abstract

Completed genome sequences have made it clear that multicopper oxidases related to laccase are widely distributed as multigene families in higher plants. Laccase-like multicopper oxidase (LMCO) sequences culled from GenBank and the Arabidopsis thaliana genome, as well as those from several newly cloned genes, were used to construct a gene phylogeny that clearly divided plant LMCOs into six distinct classes, at least three of which predate the evolutionary divergence of angiosperms and gymnosperms. Alignments of the predicted amino acid sequences highlighted regions of variable sequence flanked by the highly conserved copper-binding domains that characterize members of this enzyme family. All of the predicted proteins contained apparent signal sequences. The expression of 13 of the 17 LMCO genes in A. thaliana was assessed in different tissues at various stages of development using RT-PCR. A diversity of expression patterns was demonstrated with some genes being expressed in a constitutive fashion, while others were only expressed in specific tissues at a particular stage of development. Only a few of the LMCO genes were expressed in a pattern that could be considered consistent with a major role for these enzymes in lignin deposition. These results are discussed in the context of other potential physiological functions for plant LMCOs, such as iron metabolism and wound healing.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge