English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Neurochemistry 1997-Jan

Generation of reactive oxygen species by tyrosine hydroxylase: a possible contribution to the degeneration of dopaminergic neurons?

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
J Haavik
B Almås
T Flatmark

Keywords

Abstract

It has been suggested that idiopathic parkinsonism, characterized by a loss of dopaminergic neurons of the nigrostriatal pathway, is due to the intracellular generation of reactive oxygen species, generated by a nonenzymatic or enzymatic partial reduction of dioxygen. Based on in vitro studies of the iron-containing monooxygenase tyrosine hydroxylase (TH), evidence is presented that this enzyme system may also contribute to such an oxidative stress. Thus, the purified and Fe(2+)-reconstituted recombinant human enzyme shows a time- and temperature-dependent partial uncoupling of the hydroxylation of L-tyrosine with the natural cofactor (6R)-tetrahydrobiopterin, resulting in the formation of H2O2. The degree of uncoupling of the hydroxylation reaction is significantly higher when certain substrate analogues, notably the 7-substituted isomer (7-tetrahydrobiopterin) of the natural cofactor, is used. In the presence of H2O2 and Fe2+, the addition of TH increases the production of the highly reactive.OH radical, probably via a Fenton type of reaction. It is not clear whether this in vitro reaction can mediate cellular injury in vivo. However, it is known that the distribution of TH in the central and peripheral nervous system often corresponds to that of the neuronal degeneration in idiopathic parkinsonism, a finding that is compatible with a pathogenetic effect of TH.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge