English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Plant Cell 2008-Sep

Genetic analysis reveals that C19-GA 2-oxidation is a major gibberellin inactivation pathway in Arabidopsis.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Ivo Rieu
Sven Eriksson
Stephen J Powers
Fan Gong
Jayne Griffiths
Lindsey Woolley
Reyes Benlloch
Ove Nilsson
Stephen G Thomas
Peter Hedden

Keywords

Abstract

Bioactive hormone concentrations are regulated both at the level of hormone synthesis and through controlled inactivation. Based on the ubiquitous presence of 2beta-hydroxylated gibberellins (GAs), a major inactivating pathway for the plant hormone GA seems to be via GA 2-oxidation. In this study, we used various approaches to determine the role of C(19)-GA 2-oxidation in regulating GA concentration and GA-responsive plant growth and development. We show that Arabidopsis thaliana has five C(19)-GA 2-oxidases, transcripts for one or more of which are present in all organs and at all stages of development examined. Expression of four of the five genes is subject to feed-forward regulation. By knocking out all five Arabidopsis C(19)-GA 2-oxidases, we show that C(19)-GA 2-oxidation limits bioactive GA content and regulates plant development at various stages during the plant life cycle: C(19)-GA 2-oxidases prevent seed germination in the absence of light and cold stimuli, delay the vegetative and floral phase transitions, limit the number of flowers produced per inflorescence, and suppress elongation of the pistil prior to fertilization. Under GA-limited conditions, further roles are revealed, such as limiting elongation of the main stem and side shoots. We conclude that C(19)-GA 2-oxidation is a major GA inactivation pathway regulating development in Arabidopsis.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge