English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Biology Open 2014-Apr

Genetic studies in Drosophila and humans support a model for the concerted function of CISD2, PPT1 and CLN3 in disease.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Melanie A Jones
Sami Amr
Aerial Ferebee
Phung Huynh
Jill A Rosenfeld
Michael F Miles
Andrew G Davies
Christopher A Korey
John M Warrick
Rita Shiang

Keywords

Abstract

Wolfram syndrome (WFS) is a progressive neurodegenerative disease characterized by diabetes insipidus, diabetes mellitus, optic atrophy, and deafness. WFS1 and WFS2 are caused by recessive mutations in the genes Wolfram Syndrome 1 (WFS1) and CDGSH iron sulfur domain 2 (CISD2), respectively. To explore the function of CISD2, we performed genetic studies in flies with altered expression of its Drosophila orthologue, cisd2. Surprisingly, flies with strong ubiquitous RNAi-mediated knockdown of cisd2 had no obvious signs of altered life span, stress resistance, locomotor behavior or several other phenotypes. We subsequently found in a targeted genetic screen, however, that altered function of cisd2 modified the effects of overexpressing the fly orthologues of two lysosomal storage disease genes, palmitoyl-protein thioesterase 1 (PPT1 in humans, Ppt1 in flies) and ceroid-lipofuscinosis, neuronal 3 (CLN3 in humans, cln3 in flies), on eye morphology in flies. We also found that cln3 modified the effects of overexpressing Ppt1 in the eye and that overexpression of cln3 interacted with a loss of function mutation in cisd2 to disrupt locomotor ability in flies. Follow-up multi-species bioinformatic analyses suggested that a gene network centered on CISD2, PPT1 and CLN3 might impact disease through altered carbohydrate metabolism, protein folding and endopeptidase activity. Human genetic studies indicated that copy number variants (duplications and deletions) including CLN3, and possibly another gene in the CISD2/PPT1/CLN3 network, are over-represented in individuals with developmental delay. Our studies indicate that cisd2, Ppt1 and cln3 function in concert in flies, suggesting that CISD2, PPT1 and CLN3 might also function coordinately in humans. Further, our studies raise the possibility that WFS2 and some lysosomal storage disorders might be influenced by common mechanisms and that the underlying genes might have previously unappreciated effects on developmental delay.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge