English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
International Journal of Molecular Sciences 2019-Oct

Genome-Wide Identification and Characterization of Cucumber BPC Transcription Factors and Their Responses to Abiotic Stresses and Exogenous Phytohormones.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Shuzhen Li
Li Miao
Bin Huang
Lihong Gao
Chaoxing He
Yan Yan
Jun Wang
Xianchang Yu
Yansu Li

Keywords

Abstract

BASIC PENTACYSTEINE (BPC) is a small transcription factor family that functions in diverse growth and development processes in plants. However, the roles of BPCs in plants, especially cucumber (Cucumis sativus L.), in response to abiotic stress and exogenous phytohormones are still unclear. Here, we identified four BPC genes in the cucumber genome, and classified them into two groups according to phylogenetic analysis. We also investigated the gene structures and detected five conserved motifs in these CsBPCs. Tissue expression pattern analysis revealed that the four CsBPCs were expressed ubiquitously in both vegetative and reproductive organs. Additionally, the transcriptional levels of the four CsBPCs were induced by various abiotic stress and hormone treatments. Overexpression of CsBPC2 in tobacco (Nicotiana tabacum) inhibited seed germination under saline, polyethylene glycol, and abscisic acid (ABA) conditions. The results suggest that the CsBPC genes may play crucial roles in cucumber growth and development, as well as responses to abiotic stresses and plant hormones. CsBPC2 overexpression in tobacco negatively affected seed germination under hyperosmotic conditions. Additionally, CsBPC2 functioned in ABA-inhibited seed germination and hypersensitivity to ABA-mediated responses. Our results provide fundamental information for further research on the biological functions of BPCs in development and abiotic stress responses in cucumber and other plant species.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge