English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Gut Pathogens 2015

Genome sequencing of Clostridium butyricum DKU-01, isolated from infant feces.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
SangJoon Mo
Bong-Soo Kim
Sung-Jo Yun
Jung-Ju Lee
Suk-Hyun Yoon
Chung-Hun Oh

Keywords

Abstract

BACKGROUND

Clostridium butyricum is a butyric acid-producing anaerobic bacteriuma, and commonly present as gut microbiota in humans. This species has been used as a probiotic for the prevention of diarrhea in humans. In this study, we report the draft genome of C. butyricum DKU-01, which was isolated from infant feces, to better understand the characteristics of this strain so that it can later be used in the development of probiotic products.

RESULTS

A total of 79 contigs generated by hybrid assembly of sequences obtained from Roche 454 and Illumina Miseq sequencing systems were investigated. The assembled genome of strain DKU-01 consisted of 4,519,722 bp (28.62% G + C content) with a N50 contig length of 108,221 bp and 4,037 predicted CDSs. The extracted 16S rRNA gene from genome sequences of DKU-01 was similar to Clostridium butyricum with 99.63% pairwise similarity. The sequence of strain DKU-01 was compared with previously reported genome sequences of C. butyricum. The value of average nucleotide identity between strains DKU-01 and C. butyricum 60E3 was 98.74%, making it the most similar strain to DKU-01.

CONCLUSIONS

We sequenced the DKU-01 strain isolated from infant feces, and compared it with the available genomes of C. butyricum on a public database. Genes related to Fructooligosaccharide utilization were detected in the genome of strain DKU-01 and compared with other genera, such as Bifidobacterium and Streptococcus. We found that strain DKU-01 can metabolize a wide range of carbohydrates in comparative genome result. Further analyses of the comparative genome and fermentation study can provide the information necessary for the development of strain DKU-01 for probiotics.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge