English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Genomics 2006-Sep

Genome-wide analysis, evolutionary expansion, and expression of early auxin-responsive SAUR gene family in rice (Oryza sativa).

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Mukesh Jain
Akhilesh K Tyagi
Jitendra P Khurana

Keywords

Abstract

Small auxin-up RNAs (SAURs) are the early auxin-responsive genes represented by a large multigene family in plants. Here, we report the identification of 58 OsSAUR gene family members from rice (Oryza sativa japonica cv Nipponbare), the model monocot plant, by a reiterative database search and manual reannotation; 2 of these are pseudogenes. The coding sequences of OsSAURs do not possess any intron. Most of the predicted OsSAUR protein sequences harbor a putative nuclear localization signal at their N-terminus. Localized gene duplications appear to be the primary genetic event responsible for SAUR gene family expansion in rice. Interestingly, the duplication of OsSAURs was found to be associated with the chromosomal block duplication as well. The phylogenetic analysis revealed that the SAUR gene family expanded in rice and Arabidopsis due to species-specific expansion of the family in monocots and dicots. The auxin-responsive elements and downstream element are conserved in the upstream and downstream sequences, respectively, of OsSAURs. In addition to the 21 OsSAURs with full-length cDNA sequences and 20 with expressed sequence tags, gene expression analyses of at least 7 OsSAURs by RT-qPCR indicated that the majority of identified OsSAURs most likely are expressed in rice. The transcript abundance of the OsSAURs examined increased within a few minutes of exogenous auxin application with varying kinetics. The present study provides basic genomic information for the rice SAUR gene family and will pave the way for deciphering the precise role of SAURs in plant growth and development.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge