English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Plant Journal 2005-Nov

Genome-wide expression profiling of the host response to root-knot nematode infection in Arabidopsis.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Fabien Jammes
Philippe Lecomte
Janice de Almeida-Engler
Frédérique Bitton
Marie-Laure Martin-Magniette
Jean Pierre Renou
Pierre Abad
Bruno Favery

Keywords

Abstract

During a compatible interaction, root-knot nematodes (Meloidogyne spp.) induce the redifferentiation of root cells into multinucleate nematode feeding cells (giant cells). Hyperplasia and hypertrophy of the surrounding cells leads to the formation of a root gall. We investigated the plant response to root-knot nematodes by carrying out a global analysis of gene expression during gall formation in Arabidopsis, using giant cell-enriched root tissues. Among 22 089 genes monitored with the complete Arabidopsis transcriptome microarray gene-specific tag, we identified 3373 genes that display significant differential expression between uninfected root tissues and galls at different developmental stages. Quantitative PCR analysis and the use of promoter GUS fusions confirmed the changes in mRNA levels observed in our microarray analysis. We showed that a comparable number of genes were found to be up- and downregulated, indicating that gene downregulation might be essential to allow proper gall formation. Moreover, many genes belonging to the same family are differently regulated in feeding cells. This genome-wide overview of gene expression during plant-nematode interaction provides new insights into nematode feeding-cell formation, and highlights that the suppression of plant defence is associated with nematode feeding-site development.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge