English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Scientific Reports 2018-Jun

Genome-wide transcriptional analysis of submerged lotus reveals cooperative regulation and gene responses.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Bei Wang
Qijiang Jin
Xiao Zhang
Neil S Mattson
Huihui Ren
Jing Cao
Yanjie Wang
Dongrui Yao
Yingchun Xu

Keywords

Abstract

Flooding severely limits plant growth even for some aquatic plants. Although much work has been done on submergence response of some important crop plants, little is known about the response mechanism of aquatic plants, i.e. lotus (Nelumbo nucifera). In this study, we investigated the genome-wide regulation lotus genes in response to submergence stress by high-throughput mRNA sequencing. A total of 4002 differentially expressed genes (DEGs) in lotus upon submergence stress. Among them, 1976 genes were up-regulated and 2026 down-regulated. Functional annotation of these genes by Gene ontology (GO) and Kyoto encyclopedia of genes and genomes (KEGG) enrichment analysis revealed that they were mainly involved in processes of oxidation-reduction, abiotic stimuli, cellular metabolism and small molecule metabolism. Based on these data, previous work and quantitative RT-PCR (RT-qPCR) validation, we constructed a cooperative regulation network involved in several important DEGs in regards to the antioxidant system, disease resistance, hypoxia resistance and morphological adaptation. Further work confirmed that several innate immunity genes were induced during submergence and might confer higher resistance to lotus rot disease. In conclusion, these results provide useful information on molecular mechanisms underlying lotus responses to submergence stress.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge