English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Clinical Cancer Research 2006-May

Genomic alterations in human malignant glioma cells associate with the cell resistance to the combination treatment with tumor necrosis factor-related apoptosis-inducing ligand and chemotherapy.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Yueh-Chun Li
Ching-Cherng Tzeng
Jin H Song
Fuu-Jen Tsia
Lie-Jiau Hsieh
Shu-Ju Liao
Chang-Hai Tsai
Erwin G Van Meir
Chunhai Hao
Chyi-Chyang Lin

Keywords

Abstract

OBJECTIVE

Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is currently under clinical development as a cancer therapeutic agent. Many human malignant glioma cells, however, are resistant to TRAIL treatment. We, therefore, investigated the genomic alterations in TRAIL-resistant malignant glioma cells.

METHODS

Seven glioma cell lines and two primary cultures were first analyzed for their sensitivity to TRAIL and chemotherapy and then examined for the genomic alterations in key TRAIL apoptotic genes by comparative genomic hybridization (CGH), G-banding/spectral karyotyping, and fluorescence in situ hybridization (FISH).

RESULTS

CGH detected loss of the chromosomal regions that contain the following genes: 8p12-p23 (DR4 and DR5), 2q33-34 (caspase-8), 11q13.3 (FADD), 22q11.2 (Bid), and 12q24.1-q24.3 (Smac/DIABLO) in TRAIL-resistant cell lines. Spectral karyotyping showed numerical and structural aberrations involving the chromosomal regions harboring these genes. A combination of G-banding/spectral karyotyping and FISH further defined the loss or gain of gene copy of these genes and further showed the simultaneous loss of one copy of DR4/DR5, caspase-8, Bid, and Smac in two near-triploid cell lines that were resistant to the combination treatment with TRAIL and chemotherapy. Loss of the caspase-8 locus was also detected in a primary culture in correlation with the culture resistance to the combined TRAIL and chemotherapy treatment.

CONCLUSIONS

The study identifies chromosomal alterations in TRAIL apoptotic genes in the glioma cells that are resistant to the treatment with TRAIL and chemotherapy. These genetic alterations could be used to predict the responsiveness of malignant gliomas to TRAIL-based therapies in clinical treatment of the tumors.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge