English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Biochemical Journal 1976-Jun

Gluconeogenesis in isolated intact lamb liver cells. Effects of glucagon and butyrate.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
M G Clark
O H Filsell
I G Jarrett

Keywords

Abstract

1. Isolated lamb liver cells were prepared from 24-h-starved animals by venous perfusion of the excised caudate lobe with buffer containing collagenase. On the basis of Trypan-Blue exclusion, rate of O2 uptake, adenine nucleotide content and retention of constitutive enzymes, these cells were judged to be intact. 2. Isolated caudate-lobe liver cells showed rates of gluconeogenesis from 10 mM-propionate and 10 mM-lactate that compared favourably with rates determined in isolated median-lobe cells and with rates determined with the isolated perfused lamb liver. 3. The gluconeogenic potential of substrates tested depended on the lamb's age. Cells prepared from suckling lambs (up to 20 days of age and essentially non-ruminant) showed highest rates from galactose, serine and alanine; those prepared from post-weaned lambs (older than 30 days of age and ruminant) showed highest rates from propionate, lactate and fructose. 4. Gluconeogenic rates from endogeneous precursors, 10 mM-propionate and 10mM-galactose, were linear for 1 h and were both stimulated by 1 muM-glucagon. Provided the endogenous rate of gluconeogenesis remained unchanged after substrate addition, glucagon caused a net stimulation of gluconeogenesis from each of these substrates. 5. Gluconeogenic capacity and glucagon sensitivity were examined in cells maintained in substrate-free oxygenated buffer at 37 degrees, 22 degrees and * degrees C. Even under the best of the three conditions of storage that were tested (i.e. at 22 degrees C in gelatin-containing buffer) deterioration of the lamb cells proceeded rapidly, and loss of glucagon responsiveness preceeded the loss of ability to convert precursor into glucose. 6. n-Butyric acid, 2-methylpropanoic acid and 3-methylbutanoic acid at concentrations comparable with those found in lamb portal-vein blood each stimulated gluconeogenesis from 10mM-galactose or 10mM-propionate; gluconeogenesis from galactose was stimulated to the greater extent. 7. The regulatory effects of glucagon and sodium butyrate on lamb liver-cell gluconeogenesis and glycogenolysis were compared. Glucagon (1 muM) and 2mM-butyrate accelerated the rate of glucose formation of liver cells of 24h-starved animals from lactate+pyruvate or fructose. Insulin (20nM) decreased both gluconeogenesis and the efficacy of 1 muM-glucagon. For lactate+pyruvate as substrate, the stimulatory effect of butyrate was additive to that of 1muM-glucagon and for both lactate+pyruvate and fructose the stimulatory effect of butyrate was not influenced by 20nM-insulin. In contrast with glucagon, which stimulated the rate of glycogenolysis in cells prepared from fed lambs, butyrate (0.1-20mM) had no effect. 8. It is concluded that glucagon and butyrate stimulate lamb liver-cell gluconeogenesis by different mechanisms.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge