English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Current Medical Research and Opinion 2002

Glutamate AMPA receptor antagonist treatment for ischaemic stroke.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Paul T Akins
Richard P Atkinson

Keywords

Abstract

During cerebral ischaemia, glutamate is released in supraphysiological amounts and is toxic to brain tissue. This excitotoxicity is mediated by several glutamate receptor subtypes, including the ionotropic N-methyl-D-aspartate (NMDA) and alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) receptors. Clinical trials of drugs that block the NMDA receptor in acute ischaemic stroke have been disappointing. No improvement in clinical outcome of stroke has been seen with competitive NMDA antagonists (selfotel) and non-competitive NMDA antagonists (dextrorphan, GV150526, aptiganel and eliprodil). The AMPA receptor differs in important ways from the NMDA receptor. It is the principal mediator of fast excitatory neurotransmission. This ligand-gated cation channel is primarily permeable to sodium rather than calcium. It is found in grey and white matter. It is expressed by oligodendrocytes. This distribution may provide neuroprotection for both grey and white matter. In a variety of animal models, reduction in infarct volume with AMPA blockade has been demonstrated. AMPA antagonists also show benefit in spinal cord ischaemia and trauma. The clinical development of safe and effective AMPA blockers has been hampered by poor water solubility and associated renal toxicity. A novel, highly water-soluble, competitive AMPA receptor antagonist, YM872 ([2,3-dioxo-7-(1H-imidazol-1-yl)-6-nitro-1,2,3,4-tetrahydroquinoxalin-1-yl]acetic acid monohydrate; Yamanouchi), has been identified. Phase I clinical trial data indicate that this agent can be safely administered in young and elderly subjects. Sedation and other CNS associated adverse events determine the ceiling dose and become more problematic with infusion times exceeding 24 h. Phase II studies of YM872 in acute ischaemic stroke are ongoing.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge