English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Neurophysiology 2003-Oct

Glutamatergic propagation of GABAergic seizure-like afterdischarge in the hippocampus in vitro.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Yoshikazu Isomura
Yoko Fujiwara-Tsukamoto
Masahiko Takada

Keywords

Abstract

Previous investigations have suggested that GABA may act actively as an excitatory mediator in the generation of seizure-like (ictal) or interictal epileptiform activity in several experimental models of temporal lobe epilepsy. However, it remains to be known whether or not such GABAergic excitation may participate in seizure propagation into neighboring cortical regions. In our in vitro study using mature rat hippocampal slices, we examined the cellular mechanism underlying synchronous propagation of seizure-like afterdischarge in the CA1 region, which is driven by depolarizing GABAergic transmission, into the adjacent subiculum region. Tetanically induced seizure-like afterdischarge was always preceded by a GABAergic, slow posttetanic depolarization in the pyramidal cells of the original seizure-generating region. In contrast, the slow posttetanic depolarization was no longer observed in the subicular pyramidal cells when the afterdischarge was induced in the CA1 region. Surgical cutting of axonal pathways through the stratum oriens and the alveus between the CA1 and the subiculum region abolished the CA1-generated afterdischarge in the subicular pyramidal cells. Intracellular loading of fluoride ions, a GABAA receptor blocker, into single subicular pyramidal cells had no inhibitory effect on the CA1-generated afterdischarge in the pyramidal cells. Furthermore, the CA1-generated afterdischarge in the subicular pyramidal cells was largely depressed by local application of glutamate receptor antagonists to the subiculum region during afterdischarge generation. The present results indicate that the excitatory GABAergic generation of seizure-like activity seems to be restricted to epileptogenic foci of origin in the seizure-like epilepsy model in vitro.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge