English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Environmental Science and Pollution Research 2019-May

Graviola attenuates DMBA-induced breast cancer possibly through augmenting apoptosis and antioxidant pathway and downregulating estrogen receptors.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Mohamed Zeweil
Kadry Sadek
Nabil Taha
Yasser El-Sayed
Sherif Menshawy

Keywords

Abstract

Breast cancer is a global public health problem where it is the second most prevalent cancer. Historical cancer treatment with graviola has been reported. This study aimed to investigate the protective effects of graviola on 7,12-dimethylbenz[a]anthracene (DMBA)-induced rat breast cancer. Fifty female Wistar rats were allocated into four groups: control group (gastro-gavaged by sesame oil), DMBA-treated group (gastro-gavaged a single dose of DMBA [50 mg/kg body mass, diluted in 1 ml sesame oil]) at the age 57 days, DMBA+G37-treated group (gastro-gavaged a single dose of DMBA [50 mg/kg body mass, diluted in 1 ml sesame oil]) at the age of 57 days plus graviola (200 mg/kg body mass) two times weekly (p.o.) at the age of 37 days till the end of the experiment, and DMBA+G57-treated group (received a single dose of DMBA [50 mg/kg body mass, diluted in 1 ml sesame oil]) plus graviola (200 mg/kg body mass) two times weekly at the age of 57 days until the end of the experiment. After the 30-week experimental period, blood samples were collected. Then, animals were sacrificed to determine the apoptotic indices, antioxidant status, and mammary gland tumor marker (CA 15-3). The DMBA upregulated the expression of one of the main anti-apoptotic genes: B-cell lymphoma protein 2 (BCL2) and estrogen receptor alpha (ER-α) gene. Moreover, it significantly increased breast lipid peroxidation and serum CA 15-3 but decreased breast antioxidant enzymatic activities (glutathione peroxidase, glutathione S-transferase, catalase, and superoxide dismutase). Nevertheless, administration of DMBA and graviola especially DMBA+G37 induced apoptosis through at least 1.5-fold in gene expression levels of pro-apoptotic genes: BCL2-associated X protein (BAX), tumor suppressor gene (P53), and cysteinyl-aspartic acid-protease-3 (caspase-3). A critical role of P53 in the regulation of the BCL2 and BAX has been reported. These proteins can determine if the cell undergoes apoptosis or cancels the process. Once the BAX gene activates caspase-3, there is no irreversible way toward cell death. Also, graviola ameliorated the DMBA effects on antioxidant enzymatic activities and tumor marker CA 15-3. This study concludes that graviola ameliorated DMBA-induced breast cancer potentially through upregulating apoptotic genes, downregulating the ER-α gene, increasing antioxidants, and decreasing lipid peroxidation levels.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge