English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Nanoscience and Nanotechnology 2019-May

Green Synthesis of Co₃O₄ Nanorods for Highly Efficient Catalytic, Photocatalytic, and Antibacterial Activities.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
K Kombaiah
J Vijaya
L Kennedy
K Kaviyarasu
R Ramalingam
Hamad Al-Lohedan

Keywords

Abstract

Cobalt oxide nanorods were successfully synthesized by a hot plate combustion method using the plant extract of Vitis vinifera. The plant extract as an alternative to toxic chemicals can be used generally as reducing and capping agents. The obtained nanorods were characterized by XRD, FT-IR, Raman, TEM, SAED, EDX, DRS, PL and VSM techniques for the structural, morphological, optical and magnetic properties. The XRD, FT-IR, Raman, EDX analysis confirmed the high purity of the sample. The TEM and SAED results showed the rod shape morphology of the sample. DRS and PL showed the band gap energy and emission at visible region. VSM showed the antiferromagnetic nature of the sample. The photocatalytic activities of the as-prepared cobalt oxide nanorods were investigated for the degradation of textile dying waste water. As per the standards of Indian pollution control board for industrial waste water let out into river bodies, the degradation reactions of waste water was found to be 250 mg/L at 150 min. Also, the same catalyst is used for the reduction of 4-nitrophenol and 4-nitroaniline using sodium borohydride as a reducing agent and it exhibits excellent reduction reaction, because of the high active surface sites. The time taken for the reduction reaction was 300 sec and 210 sec for 4-nitrophenol and 4-nitroaniline respectively. Also, the antibacterial activities towards the bacterial strains were studied and reported.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge