English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
European Journal of Medicinal Chemistry 2014-Aug

Green synthesis and anti-inflammatory studies of a series of 1,1-bis(heteroaryl)alkane derivatives.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Jaray Jaratjaroonphong
Surisa Tuengpanya
Rungnapha Saeeng
Sarinporn Udompong
Klaokwan Srisook

Keywords

Abstract

Molecular iodine has been used as an efficient catalyst for a double Friedel-Crafts reaction of various heteroarenes, i.e. 2-methylfuran, 2-ethylfuran, 2-methylthiophene, pyrrole, N-methylpyrrole and indole, using aldehydes as alkylating agents under "open-flask" conditions with toluene or water as the reaction media. In the presence of 10 mol% iodine in toluene at room temperature, both aliphatic and aromatic aldehydes reacted smoothly to give the corresponding bis(heteroaryl)alkanes in good to excellent yields. Interestingly, with water as the solvent, the bis(heteroaryl)alkane adducts were obtained in moderate to good yields. The use of mild reaction conditions, low catalyst loadings, and eco-friendly reagents in a single step synthesis are the advantages of the present procedure. In an effort to discover novel non-steroidal anti-inflammatory agents, the synthesized bis(heteroaryl)alkanes were evaluated for the anti-inflammatory activity in the lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophage model. These compounds (50 μM) significantly inhibited NO production and did not exhibit significant cytotoxic effects on macrophage cells. Among them, bis[(5-methyl)2-furyl](4-nitrophenyl) methane exhibited the most potent inhibition of NO with IC50 value of 42.4 ± 1.9, which is similar to that of the positive control, aminoguanidine (43.3 ± 2.5 μM). Thus, the bis[(5-methyl)2-furyl](4-nitrophenyl) methane could be considered a lead compound for the development of novel anti-inflammatory agents.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge