English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Nutritional Biochemistry 2000-Jan

Green tea extract (AR25) inhibits lipolysis of triglycerides in gastric and duodenal medium in vitro.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
C Juhel
M Armand
Y Pafumi
C Rosier
J Vandermander
D Lairon

Keywords

Abstract

In this study, we aimed to evaluate in vitro the inhibitory activity of a green tea extract (AR25 standardized at 25% catechins) on gastric and pancreatic lipase activities. We first used tributyrin as a substrate to evaluate the capability of AR25 to induce digestive lipase inhibition. Gastric lipase was totally inhibited by 40 mg AR25/g tributyrin whereas pancreatic lipase inhibition was maximum (78.8 +/- 0.7%) with 80 mg AR25/g tributyrin. We then used triolein, a long-chain triglyceride, to check whether AR25 could alter lipase activities on a physiologic substrate. AR25 60 mg/g triolein induced a dramatic inhibition of gastric lipase (96.8 +/- 0.4%) whereas pancreatic lipase activity was partially reduced (66.50 +/- 0.92%). Finally, the concerted action of gastric and pancreatic lipases was studied with an excess of enzymes to mimic the physiologic conditions observed in vivo. Incubation of AR25 with an excess of digestive lipases resulted in a drastic decrease in gastric lipolysis but the inhibitory effect on pancreatic lipase was less marked. On the whole, as compared to the control, lipolysis of triolein under the successive action of the two digestive lipases was reduced by 37 +/- 0.6% in the presence of AR25. Because a lipid/water interface is necessary for lipolysis to occur, lipid emulsification and emulsion droplet size were measured in gastric and duodenal media in the presence of AR25. In gastric and duodenal conditions, AR25 inhibited the lipid emulsification process. From these data we conclude that (1) in vitro, fat digestion is significantly inhibited by 60 mg AR25/g triolein, and (2) gastric as well as pancreatic lipase inhibition could be related to altered lipid emulsification in gastric or duodenal media. The green tea extract AR25 exhibiting marked inhibition of digestive lipases in vitro is likely to reduce fat digestion in humans.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge