English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
PeerJ 2016

Growth and physiological responses of submerged plant Vallisneria natans to water column ammonia nitrogen and sediment copper.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Zhengjie Zhu
Siyuan Song
Pengshan Li
Nasreen Jeelani
Penghe Wang
Hezhong Yuan
Jinghan Zhang
Shuqing An
Xin Leng

Keywords

Abstract

Background. The decline of submerged plant populations due to high heavy metal (e.g., Cu) levels in sediments and ammonia nitrogen (ammonia-N) accumulation in the freshwater column has become a significant global problem. Previous studies have evaluated the effect of ammonia-N on submerged macrophytes, but few have focused on the influence of sediment Cu on submerged macrophytes and their combined effects. Methods. In this paper, we selected three levels of ammonia-N (0, 3, and 6 mg L(-1)) and sediment Cu (25.75 ± 6.02 as the control, 125.75 ± 6.02, and 225.75 ± 6.02 mg kg(-1)), to investigate the influence of sediment Cu and ammonia-N on submerged Vallisneria natans. We measured the relative growth rate (RGR), above- and below- ground biomass, chlorophyll, non-protein thiol (NP-SH), and free proline. Results and Discussion. The below-ground biomass of V. natans decreased with increasing Cu sediment levels, suggesting that excessive sediment Cu can result in significant damage to the root of V. natans. Similarly, the above-ground biomass significantly decreased with increasing ammonia-N concentrations, indicating that excessive water ammonia-N can cause significant toxicity to the leaf of V. natans. In addition, high ammonia-N levels place a greater stress on submerged plants than sediment Cu, which is indicated by the decline of RGR and chlorophyll, and the increase of (NP-SH) and free proline. Furthermore, high sediment Cu causes ammonia-N to impose greater injury on submerged plants, and higher sediment Cu levels (Cu ≥ 125.75 mg kg(-1)) led to the tolerant values of ammonia-N for V. natans decreasing from 6 to 3 mg L(-1). This study suggests that high sediment Cu restricts the growth of plants and intensifies ammonia-N damage to V. natans.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge