English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Plant Physiology 2015-Aug

HISTONE DEACETYLASE6-Defective Mutants Show Increased Expression and Acetylation of ENHANCER OF TRIPTYCHON AND CAPRICE1 and GLABRA2 with Small But Significant Effects on Root Epidermis Cellular Pattern.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Dong-Xu Li
Wen-Qian Chen
Zhi-Hong Xu
Shu-Nong Bai

Keywords

Abstract

Cellular patterning in the Arabidopsis (Arabidopsis thaliana) root epidermis is dependent on positional information, the transmission of which involves histone acetylation. Here, we report that HISTONE DEACETYLASE6 (HDA6) has significant effects on this cellular patterning. Mutation of HDA6 led to ectopic hair cells in the nonhair positions of root epidermis in Arabidopsis, based on an analysis of paraffin sections stained with Toluidine Blue. While HDA6 was present throughout the root tip, epidermis-specific complementation with HDA6 could rescue the hda6 phenotype. Both transcript levels and expression patterns of ENHANCER OF TRIPTYCHON AND CAPRICE1 (ETC1) and GLABRA2 (GL2) in the root tip were affected in hda6. Consistent with these changes in expression, HDA6 directly bound to the promoter regions of ETC1 and GL2, and acetylation of histone H3 on these promoter regions and acetylation of histone H4 on the ETC1 promoter region was increased in the hda6 mutant. Taken together, these results indicate that HDA6 affects the cellular patterning of Arabidopsis root epidermis through altering the histone acetylation status of ETC1 and GL2 promoters and thereby affects the expression of these two components of the core transcription factor network determining epidermal cell fates. Our findings thus provide new insights into the role of histone acetylation in root epidermis cell patterning.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge