English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
ACS Applied Materials & Interfaces 2014-Jun

Hair-inspired crystal growth of HOA in cavities of cellulose matrix via hydrophobic-hydrophilic interface interaction.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Meng He
Ryan T K Kwok
Zhenggang Wang
Bo Duan
Ben Zhong Tang
Lina Zhang

Keywords

Abstract

As one of the most ordinary phenomena in nature, numerous pores on animal skins induce the growth of abundant hairs. In this study, cavities of a cellulose matrix were used as hard templates to lead the hair-inspired crystal growth of 12-hydroxyoctadecanoic acid (HOA) through hydrophobic-hydrophilic interface interaction, and short hair-like HOA crystals with a smooth surface were formed on cellulose films. In our findings, by using solvent evaporation induced crystallization, hydrophobic HOA grew along the hydrophilic cellulose pore wall to form regular vertical worm-like and pillar-like crystals with an average diameter of about 200 nm, depending on the experimental conditions and HOA concentration. The formation mechanism of the short hair-like HOA crystals as well as the structure and properties of the cellulose/HOA submicrometer composite films were studied. The pores of the cellulose matrix supplied not only cavities for the HOA crystals fixation but also hydrophilic shells to favor the vertical growth of the relatively hydrophobic HOA crystals. The cellulose/HOA submicrometer composite films exhibited high hydrophobicity, as a result of the formation of the solid/air composite surface. Furthermore, 4-(1,2,2-triphenylethenyl) benzoic acid, an aggregation-induced emission luminogen, was used to aggregate on the cellulose surface with HOA to emit and monitor the HOA crystal growth, showing bifunctional photoluminscence and self-cleaning properties. This work opens up a novel one-step pathway to design bio-inspired submicrometer materials by utilizing natural products, showing potential applications in self-cleaning optical devices.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge