English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Biological Chemistry 2016-Dec

Helenalin Acetate, a Natural Sesquiterpene Lactone with Anti-inflammatory and Anti-cancer Activity, Disrupts the Cooperation of CCAAT Box/Enhancer-binding Protein β (C/EBPβ) and Co-activator p300.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Anke Jakobs
Simone Steinmann
Sarah Marie Henrich
Thomas J Schmidt
Karl-Heinz Klempnauer

Keywords

Abstract

Recent work has demonstrated pro-oncogenic functions of the transcription factor CCAAT box/enhancer-binding protein β (C/EBPβ) in various tumors, implicating C/EBPβ as an interesting target for the development of small-molecule inhibitors. We have previously discovered that the sesquiterpene lactone helenalin acetate, a natural compound known to inhibit NF-κB, is a potent C/EBPβ inhibitor. We have now examined the inhibitory mechanism of helenalin acetate in more detail. We demonstrate that helenalin acetate is a significantly more potent inhibitor of C/EBPβ than of NF-κB. Our work shows that helenalin acetate inhibits C/EBPβ by binding to the N-terminal part of C/EBPβ, thereby disrupting the cooperation of C/EBPβ with the co-activator p300. C/EBPβ is expressed in several isoforms from alternative translational start codons. We have previously demonstrated that helenalin acetate selectively inhibits only the full-length (liver-enriched activating protein* (LAP*)) isoform but not the slightly shorter (LAP) isoform. Consistent with this, helenalin acetate binds to the LAP* but not to the LAP isoform, explaining why its inhibitory activity is selective for LAP*. Although helenalin acetate contains reactive groups that are able to interact covalently with cysteine residues, as exemplified by its effect on NF-κB, the inhibition of C/EBPβ by helenalin acetate is not due to irreversible reaction with cysteine residues of C/EBPβ. In summary, helenalin acetate is the first highly active small-molecule C/EBPβ inhibitor that inhibits C/EBPβ by a direct binding mechanism. Its selectivity for the LAP* isoform also makes helenalin acetate an interesting tool to dissect the functions of the LAP* and LAP isoforms.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge