English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Helicobacter 2019-Jun

Helicobacter pylori urease induces pro-inflammatory effects and differentiation of human endothelial cells: Cellular and molecular mechanism.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Mariele Souza
João de Moraes
Vany Da Silva
Edward Helal-Neto
Augusto Uberti
Adriele Scopel-Guerra
Deiber Olivera-Severo
Célia Carlini
Christina Barja-Fidalgo

Keywords

Abstract

Helicobacter pylori urease (HPU) is a key virulence factor that enables bacteria to colonize and survive in the stomach. We early demonstrated that HPU, independent of its catalytic activity, induced inflammatory and angiogenic responses in vivo and directly activated human neutrophils to produce reactive oxygen species (ROS). We have investigated the effects of HPU on endothelial cells, focusing on the signaling mechanism involved.Monolayers of human microvascular endothelial cells (HMEC-1) were stimulated with HPU (up to 10 nmol/L): Paracellular permeability was accessed through dextran-FITC passage. NO and ROS production was evaluated using intracellular probes. Proteins or mRNA expressions were detected by Western blotting and fluorescence microscopy or qPCR assays, respectively.Treatment with HPU enhanced paracellular permeability of HMEC-1, preceded by VE-cadherin phosphorylation and its dissociation from cell-cell junctions. This caused profound alterations in actin cytoskeleton dynamics and focal adhesion kinase (FAK) phosphorylation. HPU triggered ROS and nitric oxide (NO) production by endothelial cells. Increased intracellular ROS resulted in nuclear factor kappa B (NF-κB) activation and upregulated expression of cyclooxygenase-2 (COX-2), hemeoxygenase-1 (HO-1), interleukin-1β (IL-1β), and intercellular adhesion molecule-1 (ICAM-1). Higher ICAM-1 and E-selectin expression was associated with increased neutrophil adhesion on HPU-stimulated HMEC monolayers. The effects of HPU on endothelial cells were dependent on ROS production and lipoxygenase pathway activation, being inhibited by esculetin. Additionally, HPU improved vascular endothelial growth factor receptor 2 (VEGFR-2) expression.The data suggest that the pro-inflammatory properties of HPU drive endothelial cell to a ROS-dependent program of differentiation that contributes to the progression of H pylori infection.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge