English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
American Journal of Physiology - Gastrointestinal and Liver Physiology 2012-Mar

Hepatic cellular senescence pathway genes are induced through histone modifications in a diet-induced obese rat model.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Xiyuan Zhang
Dan Zhou
Rita Strakovsky
Yukun Zhang
Yuan-Xiang Pan

Keywords

Abstract

Overnutrition, such as a high-fat (HF) diet, is a feature followed by some in developed nations that leads to obesity and fatty liver disease. In rats, when fed a fat-high diet, some develop obesity (obesity prone, OP) while others display an obesity-resistant (OR) phenotype. The present study investigated the differences between OP and OR rats on their activation of hepatic cellular senescence pathways on a HF diet. Male OP and OR rats were fed a HF diet containing 45% kcal from fat for 13 wk, and livers were collected for analysis by quantitative real-time PCR, Western blot, and chromatin immunoprecipitation. OP rats were 41% heavier than OR rats, despite consuming the same amount of food. Triacylglycerol levels were increased significantly in both plasma and liver of OP rats. Gene analysis demonstrated a significant increase of both the amount and the transcription rates of p16(INK4a) and p21(Cip1) mRNA in OP rats. The increased p16(INK4a) and p21(Cip1) also caused a significant decrease in the level of phosphorylation of retinoblastoma protein. In OP rats, the increase of p16(INK4a) was associated with the higher acetylation levels of histone H4 at the p16(INK4a) promoter and coding region and lower methylation level of histone H3 lysine-27 in the p16(INK4a) coding region. The increase of p21(Cip1) was associated with increased acetylation of both histone H3 and H4 and decreased trimethylation of histone H3 lysine-27 at the p21(Cip1) promoter. In the p21(Cip1) coding region, dimethylation of histone H3 lysine-4 was significantly higher (P <0.05) in livers of OP rats compared with OR rats.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge