English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Medicinal Food 2009-Apr

Hepatoprotective effects of an anthocyanin fraction from purple-fleshed sweet potato against acetaminophen-induced liver damage in mice.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Jae Ho Choi
Chul Yung Choi
Kyung Jin Lee
Yong Pil Hwang
Young Chul Chung
Hye Gwang Jeong

Keywords

Abstract

The present study was undertaken to examine the protective effects of an anthocyanin fraction (AF) obtained from purple-fleshed sweet potato on acetaminophen (paraceptamol [APAP])-induced hepatotoxicity in mice and to determine the mechanism involved. Mice pretreated with AF prior to APAP administration showed significantly lower increases in serum alanine aminotransferase and aspartate aminotransferase activities and hepatic malondialdehyde formation than APAP-treated animals without AF. In addition, AF prevented hepatic glutathione (GSH) depletion by APAP, and hepatic GSH levels and GSH S-transferase activities were up-regulated by AF. APAP-induced hepatotoxicity was also prevented by AF, as indicated by liver histopathology findings. In addition, the effects of AF were examined on cytochrome P450 (CYP) 2E1, the major isozyme involved in APAP bioactivation. Treatment of mice with AF significantly and dose-dependently reduced CYP2E1-dependent aniline hydroxylation and CYP2E1 protein levels. Furthermore, AF had an antioxidant effect on FeCl(2)/ascorbate-induced lipid peroxidation in mouse liver homogenates and had superoxide radical scavenging activity. These results suggest that AF protects against APAP-induced hepatotoxicity by blocking CYP2E1-mediated APAP bioactivation, by up-regulating hepatic GSH levels, and by acting as a free radical scavenger.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge