English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Organic Chemistry 2002-Feb

Heterodimerization of dye-modified cyclodextrins with native cyclodextrins.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Tetsuo Kuwabara
Taiyo Aoyagi
Makoto Takamura
Akiko Matsushita
Asao Nakamura
Akihiko Ueno

Keywords

Abstract

The heterodimerization behavior of dye-modified beta-cyclodextrins (1-6) with native cyclodextrins (CDs) was investigated by means of absorption and induced circular dichroism spectroscopy in an aqueous solution. Three types of azo dye-modified beta-CDs (1-3) show different association behaviors, depending on the positional difference and the electronic character of substituent connected to the CD unit in the dye moiety. p-Methyl red-modified beta-CD (1), which has a 4-(dimethylamino)azobenzene moiety connected to the CD unit at the 4' position by an amido linkage, forms an intramolecular self-complex, inserting the dye moiety in its beta-CD cavity. It also associates with the native alpha-CD by inserting the moiety of 1 into the alpha-CD cavity. The association constants for such heterodimerization are 198 M(-1) at pH 1.00 and 305 M(-1) at pH 6.59, which are larger than the association constant of 1 for beta-CD (43 M(-1) at pH 1.00). Methyl red-modified 2, which has the same dye moiety as that for 1 although its substituent position is different from that of 1, does not associate even with alpha-CD due to the stable self-intramolecular complex, in which the dye moiety is deeply included in its own cavity of beta-CD. Alizarin yellow-modified CD (3), which has an azo dye moiety different from that of 1 and 2, caused a slight spectral variation upon addition of alpha-CD, suggesting that the interaction between 3 and alpha-CD is weak. On the other hand, phenolphthalein-modified beta-CD (4), which forms an intermolecular association complex in its higher concentrations, binds with beta-CD with an association constant of 787 M(-1) at pH 10.80, where 4 exists as the dianion monomer in the absence of beta-CD. p-Nitorophenol-modified beta-CDs (5 and 6), each having p-nitorophenol moieties with a different connecting part with an amido and amidophenyl group, respectively, associated with alpha-CD with association constants of 66 and 16 M(-1) for 5 and 6, respectively. The phenyl unit in the connecting part of 6 may prevent the smooth binding with alpha-CD. All these results suggest that the dye-modified CDs, in which the dye part is not tightly included in its CD cavity, associate with the native CD to form heterodimer composed of two different CD units by inserting the dye moiety into the native CD unit. The resulting heterodimers have a cavity that can bind another appending moiety of host molecules. On this basis, more ordered molecular arrays or the supramolecular hereropolymers can be constructed.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge