English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Environmental Science & Technology 2019-Sep

Heterologous Expression of Pteris vittata Phosphate Transporter PvPht1;3 Enhances Arsenic Translocation to and Accumulation in Tobacco Shoots.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Yue Cao
Huayuan Feng
Dan Sun
Guohua Xu
Bala Rathinasabapathi
Yanshan Chen
Lena Q

Keywords

Abstract

Arsenic-hyperaccumulator Pteris vittata is efficient in As accumulation and has been used in phytoremediation of As-contaminated soils. Arsenate (AsV) is the predominant As species in aerobic soils and is taken up by plants via phosphate transporters (Pht) including P. vittata. In this work, we cloned the PvPht1;3 full length coding sequence from P. vittata and investigated its role in As accumulation by yeast and plants. PvPht1;3 complemented a yeast P uptake mutant strain and showed a stronger affinity and transport capacity to AsV than PvPht1;2. In transgenic tobacco, PvPht1;3 enhanced AsV absorption and translocation, increasing As accumulation in the shoots under both hydroponic and soil experiments. On the basis of the expression patterns via qRT-PCR, PvPht1;3 was strongly induced by P deficiency but not As exposure. To further understand its expression pattern, transgenic Arabidopsis thaliana and soybean expressing the GUS reporter gene, driven by PvPht1;3 promoter, were produced. The GUS staining showed that the reporter gene was mainly expressed in the stele cells, indicating that PvPht1;3 was expressed in stele cells and was likely involved in P/As translocation. Taken together, the data suggested that PvPht1;3 was a high-affinity AsV transporter and was probably responsible for efficient As translocation in P. vittata. Our results suggest that expressing PvPht1;3 enhances As translocation and accumulation in plants, thereby improving phytoremediation of As-contaminated soils.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge