English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Current Eye Research 2015

High-Mobility Group Box-1 Modulates the Expression of Inflammatory and Angiogenic Signaling Pathways in Diabetic Retina.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Ahmed M Abu El-Asrar
Ghulam Mohammad
Mohammad Imtiaz Nawaz
Mohammad Mairaj Siddiquei

Keywords

Abstract

OBJECTIVE

The expression of high-mobility group box-1 (HMGB1) is upregulated in epiretinal membranes and vitreous fluid from patients with proliferative diabetic retinopathy and in the diabetic retina. HMGB1 mediates inflammation, breakdown of the blood-retinal barrier and apoptosis in the diabetic retina. Here, we investigated inflammatory and angiogenic signaling pathways activated by HMGB1 in diabetic retina.

METHODS

Human retinal microvascular endothelial cells (HRMEC) and retinas from 1-month diabetic rats and normal rats intravitreally injected with HMGB1 were studied using RT-PCR, Western blot analysis and co-immunoprecipitation. We also studied the effect of the HMGB1 inhibitor glycyrrhizin on diabetes-induced biochemical changes in the retina.

RESULTS

Diabetes and intravitreal injection of HMGB1 in normal rats induced significant upregulation of the mRNA levels of the chemokine stromal cell-derived factor-1 (SDF-1/CXCL12) receptor CXCR4 and protein levels of hypoxia-inducible factor-1α, early growth response-1, tyrosine kinase 2 and the CXCL12/CXCR4 chemokine axis. Constant glycyrrhizin intake from onset of diabetes did not affect the metabolic status of the diabetic rats, but it restored these increased mediators to control values. Stimulation of HRMEC with HMGB1 and intraviteral injection of HMGB1 significantly increased the expression of vascular endothelial growth factor (VEGF) and VEGF receptor-2. Co-immunoprecipitation studies showed that diabetes increased the interaction between CXCL12 and CXCR4 and between HMGB1 and receptor for advanced glycation end products (RAGE), but not between HMGB1 and the CXCL12/CXCR4 chemokine axis.

CONCLUSIONS

Our findings suggest that HMGB1 activates inflammatory and angiogenic signaling pathways in diabetic retina mediated by RAGE.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge