English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Biochemistry 2007-Dec

High throughput screening reveals several new classes of glutamate dehydrogenase inhibitors.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Ming Li
Aron Allen
Thomas J Smith

Keywords

Abstract

Glutamate dehydrogenase (GDH) has been shown to play a regulatory role in insulin secretion by pancreatic beta-cells. The most compelling evidence of this comes from features of the hyperinsulism/hyperammonemia (HI/HA) syndrome where a dominant mutation causes the loss of inhibition by GTP, and from studies that link leucine (and its analogue BCH) activation of GDH to stimulation of insulin secretion. This suggests that GDH may represent a new and novel drug target to control a variety of insulin disorders. Recently we demonstrated that a subset of green tea polyphenols are potent inhibitors of glutamate dehydrogenase in vitro and can efficaciously block BCH stimulation of insulin secretion. In these current studies, we extend our search for GDH inhibitors using high throughput methods to pan through more than 27,000 compounds. A number of known and new inhibitors were identified with IC50s in the low micromolar range. These new inhibitors were found to act via apparently different mechanisms with some inhibiting the reaction in a positively cooperative manner, the inhibition by only some of the compounds was reversed by ADP, and one compound was found to stabilize the enzyme against thermal denaturation. Therefore, these new compounds not only are new leads in the treatment of hyperactive GDH but also are useful in dissecting the complex allosteric nature of the enzyme.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge