English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Archives of Insect Biochemistry and Physiology 2005-Dec

Host refractoriness of the tobacco hornworm, Manduca sexta, to the braconid endoparasitoid Cotesia flavipes.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Mario A Rodríguez-Pérez
Ronald F Dumpit
Jennifer M Lenz
Erinn N Powell
Selina Y Tam
Nancy E Beckage

Keywords

Abstract

Cotesia flavipes (Hymenoptera:Braconidae) is a gregarious endoparasitoid of several pyralid stemborer larvae of economic significance including the sugarcane borer, Diatraea saccharalis. In this study, the ability of this parasitoid to develop in a sphingid host, Manduca sexta, was tested. First, second, third, fourth, and even pharate fifth instar host tobacco hornworm larvae were readily parasitized by the female C. flavipes parasitoids but no wasp larvae hatched from the eggs in this refractory host. Instead, the parasitoid eggs were invariably encapsulated by the host's hemocytes and, ultimately, no parasitoids emerged from tobacco hornworm hosts. The first stages of encapsulation were evident at 2 h post-parasitization of the host M. sexta larvae, when the beginning stages of capsule formation were seen. The developmental fate of the host larvae with encapsulated parasitoids was variable. Most succumbed as abnormally small fifth instars or as post-wandering prepupal animals, while a few developed normally to the pupal stage. Dissection of all the larvae or pupae with encapsulated wasp eggs showed evidence of hemocytic encapsulation and melanization of the C. flavipes eggs. This report describes the association between C. flavipes and M. sexta, which appears to be an excellent model system for studying the physiological processes accompanying wasp egg encapsulation that result in death of the host as well as the parasitoid. Since the parasitoid egg never hatches, the system offers an excellent opportunity to identify and study the effects of parasitoid-injected polydnavirus and venom on host physiology.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge