English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Microvascular Research 2008-Aug

Human neutrophil-pulmonary microvascular endothelial cell interactions in vitro: differential effects of nitric oxide vs. peroxynitrite.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Jennifer L Shelton
Lefeng Wang
Gediminas Cepinskas
Richard Inculet
Sanjay Mehta

Keywords

Abstract

Sepsis-induced acute lung injury is characterized by activation and injury of pulmonary microvascular endothelial cells (PMVEC), increased neutrophil-PMVEC adhesion and migration, and trans-PMVEC high-protein edema. Inducible NO synthase (iNOS) inhibits septic murine neutrophil migration in vivo and in vitro. The effects of NO in human neutrophil-PMVEC interactions are not known. We isolated human PMVEC using magnetic bead-bound anti-PECAM antibody. Confluent PMVEC at passage 3-4 were co-cultured with human neutrophils for assessment of neutrophil-PMVEC adhesion, and trans-PMVEC neutrophil migration and Evans-Blue dye-labeled albumin leak. Two NO donors (spermine-NONOate, S-nitroso-N-acetylpenicillamine) attenuated both cytomix-enhanced neutrophil-PMVEC adhesion by 64+/-14% (p<0.01) and 32+/-3% (p<0.05), respectively, and cytomix-induced trans-PMVEC neutrophil migration by 85+/-16% (p<0.01) and 43+/-5% (p<0.01), respectively. Correspondingly, iNOS inhibition with 1400W enhanced cytomix-stimulated neutrophil migration by 52+/-3% (p<0.01), but had no effect on neutrophil-PMVEC adhesion. Conversely, a peroxynitrite donor (SIN-1) increased both neutrophil-PMVEC adhesion (38+/-2% vs. 14+/-1% control, p<0.01) and trans-PMVEC neutrophil migration; with both effects were completely inhibited by scavenging of NO, superoxide, or peroxynitrite (p<0.05 for each). Scavenging of peroxynitrite also eliminated cytomix-induced neutrophil adhesion and migration. Blocking CD18-dependent neutrophil adhesion prevented cytomix-stimulated trans-PMVEC EB-albumin leak (p<0.05), while inhibiting neutrophil migration paradoxically enhanced cytomix-stimulated EB-albumin leak (11+/-1% vs. 7+/-0.5%, p<0.01). FMLP-induced neutrophil migration had no effect on trans-PMVEC EB-albumin leak. In summary, we report differential effects, including the inhibitory action of NO and stimulatory effect of ONOO(-) on human neutrophil-PMVEC adhesion and trans-PMVEC migration under cytomix stimulation. Moreover, neutrophil-PMVEC adhesion, but not trans-PMVEC migration, contributes to human PMVEC barrier dysfunction.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge