English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Pharmaceutical Research 2002-Dec

Human, rat, and mouse metabolism of resveratrol.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Chongwoo Yu
Young Geun Shin
Anita Chow
Yongmei Li
Jerome W Kosmeder
Yong Sup Lee
Wendy H Hirschelman
John M Pezzuto
Rajendra G Mehta
Richard B van Breemen

Keywords

Abstract

OBJECTIVE

Resveratrol, a phenolic phytoalexin occurring in grapes, wine, peanuts, and cranberries, has been reported to have anticarcinogenic, antioxidative, phytoestrogenic, and cardioprotective activities. Because little is known about the metabolism of this potentially important compound, the in vitro and in vivo metabolism of trans-resveratrol were investigated.

METHODS

The in vitro experiments included incubation with human liver microsomes, human hepatocytes, and rat hepatocytes and the in vivo studies included oral or intraperitoneal administration of resveratrol to rats and mice. Methanol extracts of rat urine, mouse serum, human hepatocytes, rat hepatocytes, and human liver microsomes were analyzed for resveratrol metabolites using reversed-phase high-performance liquid chromatography with on-line ultraviolet-photodiode array detection and mass spectrometric detection (LC-DAD-MS and LC-UV-MS-MS). UV-photodiode array analysis facilitated the identification of cis- and trans-isomers of resveratrol and its metabolites. Negative ion electrospray mass spectrometric analysis provided molecular weight confirmation of resveratrol metabolites and tandem mass spectrometry allowed structural information to be obtained.

RESULTS

No resveratrol metabolites were detected in the microsomal incubations, and no phase I metabolites, such as oxidations, reductions, or hydrolyzes, were observed in any samples. However, abundant trans-resveratrol-3-O-glucuronide and trans-resveratrol-3-sulfate were identified in rat urine, mouse serum, and incubations with rat and human hepatocytes. Incubation with beta-glucuronidase and sulfatase to release free resveratrol was used to confirm the structures of these conjugates. Only trace amounts of cis-resveratrol were detected, indicating that isomerization was not an important factor in the metabolism and elimination of resveratrol.

CONCLUSIONS

Our results indicate that trans-resveratrol-3-O-glucuronide and trans-resveratrol-3-sulfate are the most abundant metabolites of resveratrol. Virtually no unconjugated resveratrol was detected in urine or serum samples, which might have implications regarding the significance of in vitro studies that used only unconjugated resveratrol.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge