English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Photochemistry and Photobiology B: Biology 2017-May

Hydrogel containing silibinin-loaded pomegranate oil based nanocapsules exhibits anti-inflammatory effects on skin damage UVB radiation-induced in mice.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Marila Crivellaro Lay Marchiori
Cristina Rigon
Camila Camponogara
Sara Marchesan Oliveira
Letícia Cruz

Keywords

Abstract

The present study shows the development of a topical formulation (hydrogel) containing silibinin-loaded pomegranate oil based nanocapsules suspension and its evaluation as an alternative for the treatment of cutaneous UVB radiation-induced damages. For this, an animal model of skin injury induced by UVB radiation was employed. Gellan gum was used as gel forming agent by its direct addition to nanocapsules suspension. The hydrogels showed adequate pH values (5.6-5.9) and a silibinin content close to the theoretical value (1mg/g). Through vertical Franz diffusion cells it was demonstrated that nanocapsules decreased the silibinin retention in the semisolid formulation. All formulations were effective in reducing mice ear edema and leukocyte infiltration induced by UVB radiation 24h after the treatments. After 48h, only the hydrogels containing nanocapsules or silibinin associated with pomegranate oil demonstrated anti-edematogenic effect, as well as the positive control (hydrogel containing silver sulfadiazine 1%). After 72h, the hydrogel containing unloaded pomegranate oil based nanocapsules still presented a small activity. In conclusion, the results of this investigation demonstrated the feasibility to prepare a semisolid formulation presenting performance comparable to the traditional therapeutic option for skin burns (silver sulfadiazine) and with prolonged in vivo anti-inflammatory activity compared to the non-nanoencapsulated compounds.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge