English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Chemistry - A European Journal 2007

Hydrogen-bond interactions of nicotine and acetylcholine salts: a combined crystallographic, spectroscopic, thermodynamic and theoretical study.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Virginie Arnaud
Michel Berthelot
Michel Evain
Jérôme Graton
Jean-Yves Le Questel

Keywords

Abstract

The hydrogen-bond (HB) interactions of the monocharged active forms of nicotine and acetylcholine (ACh) have been compared theoretically by using density functional theory (DFT) calculations and experimentally on the basis of crystallographic observations and the measurement of equilibrium constants in solution. The 2,4,6-trinitrophenolate (picrate) counterion was used to determine the experimental HB basicity of the cations despite its potential multisite HB acceptor properties. The preferred HB interaction site of the ammonium picrate salts was determined from a survey of crystallographic data found in the Cambridge Structural Database (CSD) and is supported by theoretical calculations. Two distinct classes of ammonium groups were characterised depending on the absence (quaternary ammonium) or presence (tertiary, secondary and primary ammoniums) of an N(+)HO hydrogen bond linking the two ions. The crystal structure of nicotinium picrate was determined and compared with that of ACh. This analysis revealed the peculiar behaviour of the ammonium moiety of nicotinic acetylcholine receptor (nAChR) ligands towards the picrate anion. Dedicated methods have been developed to separate the individual contributions of the anion and cation accepting sites to the overall HB basicity of the ion pairs measured in solution. The HB basicities of the picrate anions associated with the two different ammonium classes were determined in dichloromethane solution by using several model ion pairs with non-basic ammonium cations. The experimental and theoretical studies performed on the nicotine and ACh cations consistently show the significant HB ability of the acceptor site of nAChR agonists in their charged form. Both the greater HB basicity of the pyridinic nitrogen over the carbonyl oxygen and the greater HB acidity of the N(+)H unit relative to N(+)CH could contribute to the higher affinity for nAChRs of nicotine-like ligands relative to ACh-like ligands.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge