English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Plant Physiology and Biochemistry 2018-Nov

Hydrogen sulphide trapeze: Environmental stress amelioration and phytohormone crosstalk.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Aditya Banerjee
Durgesh Kumar Tripathi
Aryadeep Roychoudhury

Keywords

Abstract

Hydrogen sulphide (H2S) is recognized as the third endogenous gasotransmitter in plants after nitric oxide (NO) and carbon monoxide (CO). Though initially visualized as a toxic gaseous molecule, recent studies have illustrated its diverse role in regulating plant growth and developmental physiology. H2S is also a potent inducer of osmolytes and cellular antioxidants of enzymatic and non-enzymatic origins. It interacts with the Ca2+ and NO signaling pathways. Exogenous fumigation of H2S or application of the H2S donor, sodium hydrosulphide (NaHS) has been found to be beneficial in the amelioration of multiple abiotic stresses like salinity, drought, temperature, hypoxia and heavy metal toxicity. H2S also protects stress-sensitive proteins via persulphidation of cysteine residues, prone to reactive oxygen species (ROS)-mediated oxidation. It is well established that plants are highly dependent on phytohormone signaling during any physiological process. By virtue of the diversity of the H2S-mediated signaling network, interactions and crosstalks of this gasotransmitter with the plant hormones are evident. This article presents a detailed summary regarding the role of H2S in oxidative and environmental stress tolerance; and furthermore illustrates the reported interactions with crucial hormones like abscisic acid, auxins, gibberellic acid, ethylene and salicylic acid under physiologically differing circumstances.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge