English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Phytochemistry 2004-Oct

Hydrophobic metabolites of 2,4-dichlorophenoxyacetic acid (2,4-D) in cultured coconut tissue.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Arturo López-Villalobos
Roland Hornung
Peter F Dodds

Keywords

Abstract

Cultures of inflorescence and plumular tissues of coconut palm (Cocos nucifera L.) were maintained in the presence of the auxin, [14C]2,4-dichlorophenoxyacetic acid (2,4-D), so that its metabolic fate could be studied. Thin layer chromatography of methanol extracts of the plumular tissue showed that four classes of metabolites, as well as the unchanged acid, were recovered in the extract. In inflorescence tissue, only the unchanged acid and the most polar class of metabolites (metabolite I) were recovered. Metabolite I was shown to consist mostly of a mixture of sugar conjugates and metabolite II (the next most polar) was an unidentified basic metabolite. Metabolites III and IV were both novel triacylglycerol analogues in which one of the natural fatty acids was replaced with a chain-elongated form of 2,4-D. Reversed-phase thin layer chromatography was used to identify the 2,4-D-derived acids and it was found that metabolite III contained the 2,4-dichlorophenoxy-moiety attached to a chain-length of between 2 and 12 carbons, whereas metabolite IV contained 12, 14 and 16 carbon chain lengths. In inflorescence tissue, and in plumular tissue at low sucrose or 2,4-D concentrations and after short periods in culture, metabolite I predominated. The other metabolites increased as a percentage when plumular culture was prolonged or when sucrose or 2,4-D concentrations were raised. These changes correlated with better development of the explant.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge