English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Current Alzheimer Research 2007-Jul

Hyper-homocysteinemia alters amyloid peptide-clusterin interactions and neuroglial network morphology and function in the caudate after intrastriatal injection of amyloid peptides.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Giuseppina Leo
Susanna Genedani
Monica Filaferro
Chiara Carone
Norma Andreoli
Serenella Astancolle
Pierpaolo Davalli
Kjell Fuxe
Luigi F Agnati

Keywords

Abstract

Amyloid peptides (Abeta) are fragments of the Amyloid Precursor Protein (APP), an integral membrane protein. Abeta peptides are continuously generated by neurons and non-neuronal cells via sequential cleavage of APP by secretases. In particular, Abeta1-42 is the main component of the senile plaques associated with Alzheimer's disease (AD). Glial cells participate in the uptake of soluble extra-cellular Abeta and in the clearance of this material at localized sites where the Abeta are concentrated. It has been shown that clusterin (Apo J) and apolipoprotein E (ApoE) exert important additive effects in reducing Abeta deposition. In agreement with the fact that homocysteine (Hcy) potentiates Abeta peptide neurotoxicity, and Hcy brain levels increase with age, it has been demonstrated that high plasma levels of Hcy are a risk factor for AD. In the present paper, we used animals subjected to chronic intake of methionine (1 g/kg/day) in the drinking water, since this treatment can increase plasma Hcy levels by 30%. By means of this animal model, interactions between the Abeta beta-sheet rich fibrils and clusterin, have been evaluated in striata of animals after Abeta injection. Furthermore, it has been demonstrated that Abeta peptides are not only signals capable of activating astrocytes but also capable of reducing tyrosine-hydroxylase immunoreactivity in the basal ganglia probably leading to a reduction of volume transmission. These alterations in the neuroglial network morphology and function can, at least in part, explain the enhanced pain threshold observed in the Abeta intra-striatally injected animals.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge