English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Talanta 2018-Dec

Hyperbranched mixed-mode anion-exchange polymeric sorbent for highly selective extraction of nine acidic non-steroidal anti-inflammatory drugs from human urine.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Chaonan Huang
Yun Li
Jiajia Yang
Junyu Peng
Jun Tan
Yun Fan
Longxing Wang
Jiping Chen

Keywords

Abstract

This paper describes the poly(divinylbenzene) (PDVB) supported synthesis of quaternized hyperbranched macromolecules (QHMs) and its use as a highly selective, high-capacity mixed-mode anion-exchange (MAX) sorbent. In detail, the aminated PDVB support was firstly synthesized by copolymerization of divinylbenzene and 2-(diethylamino)ethyl methacrylate via Pickering emulsion polymerization. The QHMs were then grafted on PDVB by a divergent synthesis involving consecutive reactions of resorcinol diglycidyl ether with methylamine (N, N-dimethylethanolamine for terminal epoxides), which brought in a high density of quaternary ammonium functionalities. The changes of specific surface area (SBET), pore volume and ion exchange capacity (IEC) with generation number reveal that the QHMs have been grown successfully within the large meso-channels of the porous aminated PDVB. The best compromise between the SBET, pore volume and IEC was obtained at the 4th generation (G4). Due to the highest IEC (0.47 meq/g), the G4-QHMs was successfully applied for mixed-mode solid phase extraction (SPE) of acidic non-steroidal anti-inflammatory drugs (NSAIDs). An efficient approach based on the mixed-mode SPE coupled with HPLC-UV was developed for highly selective extraction and cleanup of nine NSAIDs (tolmetin, TLM; ketoprofen, KEP; naproxen, NAP; flurbiprofen, FLB; diclofenac, DIC; indomethacin, INM; ibuprofen, IBP; mefenamic acid, MFA; tolfenamic acid, TFA) in human urine samples. Under the optimized conditions, the method exhibited satisfactory recoveries ranging from 81.9% to 104.0% with relative standard deviation (RSD) values below 8.5%, good sensitivity (0.004-0.009 μg mL-1 limit of detection) and good linearity (coefficient of determination, R2 > 0.997, 0.01-0.2 μg mL-1 for NAP, 0.05-1.0 μg mL-1 for FLB, DIC, INM, MFA, TFA, 0.1-2.0 μg mL-1 for TLM, KEP, IBP). The hyperbranched MAX sorbent is superior to Oasis HLB and comparable to Oasis MAX in obtaining clean chromatographic profiles. Our results demonstrate the potential application of the hyperbranched MAX for complex sample analysis.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge