English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Neuroscience 2002-Sep

Hypocretin increases impulse flow in the septohippocampal GABAergic pathway: implications for arousal via a mechanism of hippocampal disinhibition.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Min Wu
Zongming Zhang
Csaba Leranth
Changqing Xu
Anthony N van den Pol
Meenakshi Alreja

Keywords

Abstract

Hypocretins (Hcrts), or orexins, are a recently described set of hypothalamic peptides that have been implicated in feeding, neuroendocrine regulation, sleep-wakefulness, and disorders of sleep, such as narcolepsy. Hcrt-containing neurons, which are located exclusively in the lateral hypothalamic area, provide a dense innervation to the medial septum/diagonal band of Broca (MSDB), a sleep-associated brain region that has been suggested to show intense axonal degeneration in canine narcoleptics. The MSDB, via its cholinergic and GABAergic projections to the hippocampus, controls the hippocampal theta rhythm and associated learning and memory functions that occur during exploratory behavior and rapid eye movement sleep. Neurons of the MSDB express the Hcrt receptor 2, which is mutated in canine narcoleptics, but lack the Hcrt receptor 1 mRNA. In the present study, we investigated the electrophysiological effects of Hcrt2 on MSDB neurons from rat brain slices. We report that Hcrt2 produces a reversible, reproducible, concentration-dependent and direct postsynaptic excitation of GABA-type neurons of the MSDB with an EC50 of 207 nm. This effect is sodium dependent but not potassium or chloride dependent and is attenuated by blockers of the Na+-Ca+ exchanger. Hcrt2 also increases impulse-dependent release of GABA within the MSDB. Using recordings from retrogradely labeled septohippocampal neurons, we found that Hcrt2-excited MSDB neurons project to the hippocampus and have a GABAergic physiological signature. Double-immunolabeling studies confirmed the presence of Hcrt receptor-2 immunoreactivity in septohippocampal GABAergic neurons, as well as the presence of Hcrt fibers adjacent to these neurons. Based on these results, we speculate that Hcrt2-induced activation of septohippocampal GABAergic neurons will, by engaging disinhibitory mechanisms in the hippocampus, promote generation of the hippocampal theta rhythm and associated behaviors.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge