English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Neurotoxicology and Teratology

Hypoxia after prenatal cocaine attenuates striatal dopamine and neurotrophic activity.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
D E Weese-Mayer
J M Silvestri
D Lin
C M Buhrfiend
L R Ptak
E S Lo
P M Carvey

Keywords

Abstract

We have previously shown that newborn rabbits exposed to cocaine prenatally have an altered cardiorespiratory response to hypoxia. We report the effect of postnatal hypoxia on brain DA and neurotrophic activity in New Zealand White rabbit pups (n = 41) born to cocaine-exposed does (30 mg/kg/day SC from days 7-15 of a 32-day gestation = COCaine) and control does (sterile H2O = VEHicle). Four to 6-day-old pups were exposed to 20 min of room air (0.21 fractional inspired oxygen tension, FIO2). One third of each group was then exposed to 20 min of either 0.15 (moderate hypoxia) or 0.08 (severe hypoxia) FIO2. Immediately following hypoxic challenge the pups were sacrificed. Striatal tissue extracts were subsequently assessed for DA and striatal trophic activity by monitoring the number of neuron specific enolase immunoreactive (NSEir) cells in mesencephalic culture following incubation with striatal extracts. Increasing the severity of hypoxia increased DA content (p < 0.005), but reduced DA activity (p < 0.0001) and trophic activity (p < 0.001). Cocaine exposure reduced striatal DA (p < 0.005) as well as NSEir (p < 0.001) in all conditions relative to vehicle-treated controls. These data suggest that prenatal cocaine exposure enhances the vulnerability of the DA system to the stress of hypoxia, possibly through alterations in neurotrophic activity.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge