English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Biochemical Pharmacology 2005-Dec

Hypoxia impedes the formation of chromium DNA-adducts in a cell-free system.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Travis J O'Brien
H George Mandel
Kent D Sugden
Andrei M Komarov
Steven R Patierno

Keywords

Abstract

The metabolic reduction of hexavalent chromium [Cr(VI)] in the presence of DNA generates several lesions which impede DNA replication and gene transcription. However, the relative contribution of molecular oxygen to Cr-induced genetic damage is unclear. To elucidate the role of dioxygen in Cr genotoxicity, we studied the formation of Cr-induced lesions in DNA treated with either Cr(VI) and the physiological reductant, ascorbic acid (Asc), or Cr(III), under ambient and hypoxic (<1% oxygen) conditions. We found that hypoxia did not impede the reduction of Cr(VI) by Asc throughout a 2 h treatment. In contrast, Cr-DNA binding under these conditions was reduced up to 70% by hypoxia, and a 50-90% decrease in the frequency of Cr-induced Taq polymerase-arresting DNA adducts was also observed. In the presence of Cr(VI)/Asc, formation of Cr-DNA interstrand crosslinks (ICLs) under hypoxia was 50% or less of that under ambient conditions. Kinetic studies found that hypoxia reduced the rate at which Cr interacted with DNA, but not the ultimate steady state level of Cr-DNA binding. The inhibitory effect of hypoxia on Cr(VI)/Asc genotoxicity could not be explained solely by alterations in the reactivity of intermediate Cr(V) species because Cr(III)-DNA binding and Cr(III)-induced ICL formation were also impaired by hypoxia. Moreover, Cr(V) was generated to similar levels in ambient and hypoxic reactions. Hypoxia did not affect ICL formation by the inorganic chemotherapeutic agent cisplatin, suggesting that these effects were specific for Cr(III). Taken together, these results support a role for dioxygen in facilitating the formation of Cr-DNA coordination complexes.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge