English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
In Vitro Cellular and Developmental Biology - Animal 2017-Jan

Hypoxia-increased expression of genes involved in inflammation, dedifferentiation, pro-fibrosis, and extracellular matrix remodeling of human bladder smooth muscle cells.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Bridget Wiafe
Adetola Adesida
Thomas Churchill
Esther Ekpe Adewuyi
Zack Li
Peter Metcalfe

Keywords

Abstract

Partial bladder outlet obstruction (pBOO) is characterized by exaggerated stretch, hydrodynamic pressure, and inflammation which cause significant damage and fibrosis to the bladder wall. Several studies have implicated hypoxia in its pathophysiology. However, the isolated progressive effects of hypoxia on bladder cells are not yet defined. Sub-confluent normal human bladder smooth muscle cells (hbSMC) were cultured in 3% O2 tension for 2, 24, 48, and 72 h. RNA, cellular proteins, and secreted proteins were used for gene expression analysis, immunoblotting, and ELISA, respectively. Transcription of hypoxia-inducible factor (HIF)1α and HIF2α were transiently induced after 2 h of hypoxia (p < 0.05), whereas HIF3 was upregulated after 72 h (p < 0.005). HIF1 and HIF3α proteins were significantly induced after 2 and 72 h, respectively. VEGF mRNA increased significantly after 24 and 72 h (p < 0.005). The inflammatory cytokines, TGFB (protein and mRNA), IL 1β, 1L6, and TNFα (mRNA) demonstrated a time-dependent increased expression. Furthermore, the anti-inflammatory cytokine IL-10 was downregulated after 72 h (p < 0.05). Evidence of smooth muscle cell dedifferentiation included increased αSMA, vimentin, and desmin. Evidence of pro-fibrotic changes included increased CTGF, SMAD 2, and SMAD 3 as well as collagens 1, 2, 3, and 4, fibronectin, aggrecan, and TIMP 1 transcripts (p < 0.05). Total collagen proteins also increased time-dependently (p < 0.05). Together, these results show that exposure of hbSMC to low oxygen tension results in intense hypoxic cascade, including inflammation, de-differentiation, pro-fibrotic changes, and increased extracellular matrix expression. This elucidates mechanisms of hypoxia-driven bladder deterioration in bladder cells, which is important in tailoring in vivo experiments and may ultimately translate into improved clinical outcomes.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge