English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
American Journal of Physiology - Lung Cellular and Molecular Physiology 2009-Dec

Hypoxia-induced alveolar epithelial-mesenchymal transition requires mitochondrial ROS and hypoxia-inducible factor 1.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Guofei Zhou
Laura A Dada
Minghua Wu
Aileen Kelly
Humberto Trejo
Qiyuan Zhou
John Varga
Jacob I Sznajder

Keywords

Abstract

Patients with acute lung injury develop hypoxia, which may lead to lung dysfunction and aberrant tissue repair. Recent studies have suggested that epithelial-mesenchymal transition (EMT) contributes to pulmonary fibrosis. We sought to determine whether hypoxia induces EMT in alveolar epithelial cells (AEC). We found that hypoxia induced the expression of alpha-smooth muscle actin (alpha-SMA) and vimentin and decreased the expression of E-cadherin in transformed and primary human, rat, and mouse AEC, suggesting that hypoxia induces EMT in AEC. Both severe hypoxia and moderate hypoxia induced EMT. The reactive oxygen species (ROS) scavenger Euk-134 prevented hypoxia-induced EMT. Moreover, hypoxia-induced expression of alpha-SMA and vimentin was prevented in mitochondria-deficient rho(0) cells, which are incapable of ROS production during hypoxia. CoCl(2) and dimethyloxaloylglycine, two compounds that stabilize hypoxia-inducible factor (HIF)-alpha under normoxia, failed to induce alpha-SMA expression in AEC. Furthermore, overexpression of constitutively active HIF-1alpha did not induce alpha-SMA. However, loss of HIF-1alpha or HIF-2alpha abolished induction of alpha-SMA mRNA during hypoxia. Hypoxia increased the levels of transforming growth factor (TGF)-beta1, and preincubation of AEC with SB431542, an inhibitor of the TGF-beta1 type I receptor kinase, prevented the hypoxia-induced EMT, suggesting that the process was TGF-beta1 dependent. Furthermore, both ROS and HIF-alpha were necessary for hypoxia-induced TGF-beta1 upregulation. Accordingly, we have provided evidence that hypoxia induces EMT of AEC through mitochondrial ROS, HIF, and endogenous TGF-beta1 signaling.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge