English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Gene Therapy 2003-Jun

Hypoxia-regulated transgene expression in experimental retinal and choroidal neovascularization.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
J W B Bainbridge
A Mistry
K Binley
M De Alwis
A J Thrasher
S Naylor
R R Ali

Keywords

Abstract

Recombinant AAV vectors mediate efficient and sustained transgene expression in retinal tissues and offer a powerful approach to the local, sustained delivery of angiostatic proteins for the treatment of ocular neovascular disorders. The application of such strategies may also require regulated gene expression to minimize the potential for unwanted adverse effects. In this study, we have evaluated the effect of a hypoxia-responsive element (HRE) on the kinetics of recombinant adeno-associated (rAAV)-mediated reporter gene expression in murine models of retinal and choroidal neovascularization. In murine ischaemia-induced retinal neovascularization, intravitreal delivery of rAAV.HRE.GFP results in reporter gene expression specifically at sites of vascular closure during the period of active neovascularization and not after vector delivery in normal controls. In murine laser-induced choroidal neovascularization, subretinal delivery of rAAV.HRE.GFP results in reporter gene expression at sites of active neovascularization but not elsewhere or after vector delivery in normal controls. HRE-driven gene expression offers an attractive strategy for the targeted and regulated delivery of angiostatic proteins to the retina in the management of neovascular disorders.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge