English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Current Eye Research 2011-Sep

Hypoxia specific SDF-1 expression by retinal pigment epithelium initiates bone marrow-derived cells to participate in Choroidal neovascularization in a laser-induced mouse model.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Zhao-Xia Zhang
Yu-Sheng Wang
Yuan-Yuan Shi
Hui-Yuan Hou
Chu Zhang
Yan Cai
Guo-Rui Dou
Li-Bo Yao
Fu-Yang Li

Keywords

Abstract

OBJECTIVE

Choroidal neovascularization (CNV) is a major cause of vision loss in patients with age-related macular degeneration (AMD). Stromal cell-derived factor-1 (SDF-1)/CXC chemokine receptor 4 (CXCR4) plays a critical role in homing of bone marrow-derived cells (BMCs) to choroidal neovascularization (CNV). In this study, we investigated the contribution of hypoxia specific HIF-1α-induced SDF-1 expression in retinal pigment epithelium (RPE) cells and the potential role of SDF-1 in CNV formation.

METHODS

Green fluorescent protein (GFP) chimeric mice were developed by transplanting bone marrow cells of gfp(+/+) transgenic mice to sublethally irradiated C57BL/6J mice. CNV was induced by laser photocoagulation. Ocular tissue was processed for immunofluorescence to detect HIF-1α and SDF-1 expression, and cell surface markers such as CXCR4, CD34 and CD31 and so on during CNV formation. In vitro, adult human RPE (hRPE) cells were cultured under conditions of chemical hypoxia using CoCl2 administration. And RNAi technique was used to knock down HIF-1α gene to observe the expression of HIF-1α and SDF-1 in hRPE cells.

RESULTS

BMCs trafficked around laser lesion adjacent to RPE layer 4 h after laser photocoagulation, where SDF-1 expression was relatively higher. With increasing expression of SDF-1, more BMCs were infiltrated into laser lesion to participate in CNV, and both reached peak at 3 d (p < 0.05). About 81% BMCs involved in CNV were CXCR4+. Many of them acquired the surface marker of endothelial precursor cells (CD34+) and endothelial cells (CD31+). The constituent ratio of CD34+ and CD31+ BMCs increased with SDF-1 expression. In vitro, we proved that hypoxia specific-HIF-1α influenced SDF-1 expression in hRPE cells.

CONCLUSIONS

These findings suggested that hypoxia-induced SDF-1 expression in RPE might be a critical initiator for recruitment of BMCs in CNV. SDF-1 might be another important factor in BMCs' differentiation into endothelial cells to participate in the CNV.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge