English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Experimental Neurology 1990-Apr

Idebenone attenuates neuronal degeneration induced by intrastriatal injection of excitotoxins.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
M Miyamoto
J T Coyle

Keywords

Abstract

Previous studies with the N18-RE-105 neuronal-like cell line and primary cortical cultures demonstrate that glutamate can produce a calcium-dependent, delayed form of neuronal degeneration that results from its competitive inhibition of cystine transport, which leads to cellular glutathione depletion and death by oxidative stress. Idebenone, a centrally active antioxidant used to treat multiinfarct dementia, protects cells from this form of glutamate-induced cytotoxicity in vitro. In the present study, we have examined the effects of systemic treatment with idebenone on the neurotoxic consequences of intrastriatal injection of kainic acid, quisqualic acid, or quinolinic acid, an NMDA receptor agonist, on neuronal degeneration. Striatal damage was assessed by quantitative neurochemistry with measurement of choline acetyltransferase activity and glutamate decarboxylase activity, by histochemical analysis for acetylcholinesterase and NADPH diaphorase staining and by behavioral assessment of circling produced by systemic apomorphine treatment 10 days after the unilateral lesion. The results indicate that treatment with idebenone provides significant protection against the neuronal degeneration induced by intrastriatal injection of kainic acid and quisqualic acid, but not the NMDA receptor agonist, quinolinic acid. The results suggest that oxidative stress may contribute to the proximate cause of neuronal degeneration induced by quisqualate and by kainate receptor agonists and that the mechanisms of neuronal degeneration caused by quisqualate/kainate receptor agonists differ from those associated with NMDA receptor agonists.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge