English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
PLoS ONE 2014

Identification and characterization of high-molecular-weight glutenin subunits from Agropyron intermedium.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Shuanghe Cao
Zhixin Li
Caiyan Gong
Hong Xu
Ran Yang
Shanting Hao
Xianping Wang
Daowen Wang
Xiangqi Zhang

Keywords

Abstract

High-molecular-weight glutenin subunit (HMW-GS) is a primary determinant of processing quality of wheat. Considerable progress has been made in understanding the structure, function and genetic regulation of HMW-GS in wheat and some of its related species, but less is known about their orthologs in Agropyron intermedium, a useful related species for wheat improvement. Here seven HMW-GSs in Ag. intermedium were identified using SDS-PAGE and Western blotting experiments. Subsequently, the seven genes (Glu-1Aix1 ∼ 4 and Glu-1Aiy1 ∼ 3) encoding the seven HMW-GSs were isolated using PCR technique with degenerate primers, and confirmed by bacterial expression and Western blotting. Sequence analysis indicated that the seven Ag. intermedium HMW-GSs shared high similarity in primary structure to those of wheat, but four of the seven subunits were unusually small compared to the representatives of HMW-GS from wheat and two of them possessed extra cysteine residues. The alignment and clustering analysis of deduced amino acid sequences revealed that 1Aix1 and 1Aiy1 subunits had special molecular structure, belonging to the hybrid type compounding between typical x- and y-type subunit. The xy-type subunit 1Aix1 is composed of the N-terminal of x-type and C-terminal of y-type, whereas yx-type subunit 1Aiy1 comprises the N-terminal of y-type and C-terminal of x-type. This result strongly supported the hypothesis of unequal crossover mechanism that might generate the novel coding sequence for the hybrid type of HMW-GSs. In addition to the aforementioned, the other novel characteristics of the seven subunits were also discussed. Finally, phylogenetic analysis based on HMW-GS genes was carried out and provided new insights into the evolutionary biology of Ag. intermedium.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge