English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
FEBS Letters 2007-Mar

Identification and characterization of the BAHD acyltransferase malonyl CoA: anthocyanidin 5-O-glucoside-6''-O-malonyltransferase (At5MAT) in Arabidopsis thaliana.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
John C D'Auria
Michael Reichelt
Katrin Luck
Ales Svatos
Jonathan Gershenzon

Keywords

Abstract

The major anthocyanin in A. thaliana is a cyanidin derivative modified by glycosylation as well as by the addition of three acyl moieties: malonyl, p-coumaroyl, and sinapoyl. We have isolated a member of the BAHD acyltransferase family which catalyzes this malonylation reaction by combining a reverse genetics approach with biochemical genomics. A mutant line containing a T-DNA insertion in At3g29590, the gene encoding the malonylating enzyme, is incapable of producing malonylated anthocyanins. Transgenic plants harboring an RNAi silencing cassette for At3g29590 demonstrate a positive correlation between reduction in the At3g29590 gene transcript and the decrease of malonylated anthocyanins. Transcript levels for both At3g29590 and the epistatic gene At4g14090, encoding 5-O-anthocyanin glucosyltransferase, increase in several plant lines as they accumulate anthocyanin pigments. Investigation of the heterologously expressed and purified malonylating enzyme showed that the activity is specific for malonyl-CoA and for anthocyanins with 5-O-glucosylation. The malonyl transfer itself occurs only to the 5-O-glucoside function, and not to any of the other sugar moieties present in A. thaliana anthocyanins. Hence, both in vivo and in vitro results define the activity of the At3g29590-encoded enzyme as an anthocyanin 5-O-glucoside-6''-O-malonyltransferase (At5MAT).

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge