English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Clinical Endocrinology and Metabolism 2008-Mar

Identification and functional analysis of a new WNT4 gene mutation among 28 adolescent girls with primary amenorrhea and müllerian duct abnormalities: a French collaborative study.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Pascal Philibert
Anna Biason-Lauber
Roman Rouzier
Catherine Pienkowski
Françoise Paris
Daniel Konrad
Eugene Schoenle
Charles Sultan

Keywords

Abstract

BACKGROUND

Müllerian duct development depends on gene and hormone interactions. Female Wnt4-knockout mice lack müllerian ducts and are virilized due to the inappropriate expression of the enzymes required for androgen production (normally repressed in female ovary). The WNT4 mutation was recently reported to be associated with failure of müllerian duct formation and virilization in two 46, XX women.

OBJECTIVE

This collaborative work was designed to determine whether the WNT4 mutation could be identified in a group of adolescent girls with Mayer-Rokitansky-Küster-Hauser syndrome.

RESULTS

We analyzed 28 DNA samples from adolescent girls with primary amenorrhea and failure of müllerian duct formation by direct sequencing and identified a new L12P mutation within exon 1 of the WNT4 gene. The substitution of leucine by proline is crucial for the conformation of the expressed protein. This amino acid substitution is unlikely to be a polymorphism because it was not found in 100 DNAs from control subjects. Functional analysis revealed that the mutation induces significantly increased expression of the enzymes involved in androgen biosynthesis (3beta-hydroxysteroid dehydrogenase and 17alpha-hydroxylase). It is interesting to note that the adolescent carrying the mutation was referred to our clinic for primary amenorrhea and hyperandrogenism (severe acne and plasma testosterone: 1.8 vs. 1.2 nmol/liter in controls). She also presented with uterine hypoplasia and follicle depletion.

CONCLUSIONS

We suggest that in adolescent girls with primary amenorrhea, müllerian duct abnormalities, and hyperandrogenism, a WNT4 mutation should be sought. Moreover, our data confirm that WNT4 is involved in the regulation of müllerian duct development and ovarian androgen biosynthesis. WNT4 may also contribute to human follicle development and/or maintenance.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge